Sự phong phú của các nguyên tố Địa_hóa_học

Hệ Mặt Trời

Abundances of solar system elements.[1]

Thành phần của Hệ mặt trời tương tự như nhiều ngôi sao khác, và ngoài những dị thường nhỏ, nó có thể được coi là hình thành từ tinh vân mặt trời có thành phần đồng nhất và thành phần của Mặt trời Photosphere tương tự như phần còn lại của Hệ mặt trời. Thành phần của không gian ảnh được xác định bằng cách khớp đường hấp thụ trong quang phổ với các mô hình bầu khí quyển của Mặt trời.[2] Cho đến nay, hai nguyên tố lớn nhất tính theo phần trăm của tổng khối lượng là hydro (74,9%) và helium (23,8%), với tất cả các yếu tố còn lại chỉ đóng góp 1,3%.[3] Có một xu hướng chung của giảm theo cấp số mũ trong phong phú với số nguyên tử tăng dần, mặc dù các nguyên tố có số nguyên tử chẵn phổ biến hơn so với các nước láng giềng số lẻ của chúng (quy tắc Oddo bồi Harkins). So với xu hướng chung, lithium, boronberyllium đã cạn kiệt và sắt được làm giàu một cách bất thường.[4]:284–285.

Mô hình của sự phong phú nguyên tố chủ yếu là do hai yếu tố. Hydro, heli và một số lithium là được hình thành trong khoảng 20 phút sau Vụ nổ lớn, trong khi phần còn lại là được tạo ra trong nội thất của các ngôi sao.[5]:316–317

Thiên thạch

Thiên thạch có nhiều loại chế phẩm, nhưng phân tích hóa học có thể xác định liệu chúng đã từng ở hành tinhtan chảy hay khác biệt. ]] s không phân biệt và có các vùi khoáng tròn gọi là chondrule s. Với độ tuổi 4,56 tỷ năm, chúng có niên đại hệ mặt trời sơ khai. Một loại đặc biệt, CI chondrite, có thành phần gần giống với hình ảnh của Mặt trời, ngoại trừ sự cạn kiệt của một số chất bay hơi (H, He, C, N, O) và một nhóm các nguyên tố (Li, B, Be) bị phá hủy bởi sự tổng hợp hạt nhân trong Mặt trời. Do thuộc nhóm thứ hai, chondrites CI được coi là phù hợp hơn cho thành phần của Hệ mặt trời ban đầu. Hơn nữa, phân tích hóa học của CI chondrites chính xác hơn so với quang cầu, do đó, nó thường được sử dụng làm nguồn cho sự phong phú hóa học, mặc dù độ hiếm của chúng (chỉ có năm được phục hồi trên Trái Đất).

Các hành tinh khổng lồ

Cutaways illustrating models of the interiors of the giant planets.

Các hành tinh của Hệ Mặt Trời được chia thành hai nhóm: bốn hành tinh bên trong là hành tinh trên mặt đất s [[[Mercury (hành tinh)|Mercury]], Venus, Earth và [ [Mars]]), với kích thước tương đối nhỏ và bề mặt đá. Bốn hành tinh bên ngoài là hành tinh khổng lồ, bị chi phối bởi hydro và helium và có mật độ trung bình thấp hơn. Chúng có thể được chia nhỏ thành khổng lồ khí (JupiterSaturn) và khổng lồ băng s (Thiên vươngHải vương) có lõi băng giá lớn.[6]:26–27,283–284

Hầu hết thông tin trực tiếp của chúng tôi về thành phần của các hành tinh khổng lồ là từ quang phổ. Từ những năm 1930, Sao Mộc được biết là có chứa hydro, metanamoni. Vào những năm 1960, interferometry đã tăng đáng kể độ phân giải và độ nhạy của phân tích quang phổ, cho phép xác định một tập hợp các phân tử lớn hơn nhiều bao gồm ethane, acetylene, nước và carbon monoxit. Tuy nhiên, quang phổ trên Trái Đất trở nên ngày càng khó khăn hơn với các hành tinh xa hơn, vì ánh sáng phản xạ của Mặt trời mờ hơn nhiều; và phân tích quang phổ ánh sáng từ các hành tinh chỉ có thể được sử dụng để phát hiện sự rung động của các phân tử, nằm trong dải tần số hồng ngoại. Điều này hạn chế sự phong phú của các yếu tố H, C và N.

Nguyên tử helium có các rung động trong phạm vi tia cực tím, được hấp thụ mạnh mẽ bởi bầu khí quyển của các hành tinh bên ngoài và Trái Đất. Do đó, mặc dù có rất nhiều, helium chỉ được phát hiện khi tàu vũ trụ được gửi đến các hành tinh bên ngoài, và sau đó chỉ gián tiếp thông qua sự biến dạng do va chạm trong các phân tử hydro. Thông tin thêm về Sao Mộc được lấy từ Đầu dò Galileo ' khi nó được gửi vào khí quyển vào năm 1995; và nhiệm vụ cuối cùng của thăm dò Cassini vào năm 2017 là để vào bầu khí quyển của Sao Thổ. Trong bầu khí quyển của Sao Mộc, Người ta thấy rằng mình bị suy giảm bởi hệ số 2 so với thành phần mặt trời và Ne với hệ số 10, một kết quả đáng ngạc nhiên vì các loại khí cao quý khác và các nguyên tố C, N và S được tăng cường bởi các yếu tố 2 đến 4 (oxy cũng bị cạn kiệt nhưng điều này được quy cho vùng khô bất thường mà Galileo đã lấy mẫu).

Các phương pháp quang phổ chỉ xuyên qua bầu khí quyển của Sao Mộc và Sao Thổ đến độ sâu nơi áp suất bằng khoảng 1 bar, xấp xỉ áp suất khí quyểnmực nước biển. Đầu dò Galileo thâm nhập tới 22 vạch. Đây là một phần nhỏ của hành tinh, dự kiến ​​sẽ đạt áp lực hơn 40 Mbar. Để hạn chế thành phần trong nội thất, các mô hình nhiệt động lực học được xây dựng bằng cách sử dụng thông tin về nhiệt độ từ phổ phát xạ hồng ngoại và phương trình trạng thái cho các chế phẩm có khả năng. Các thí nghiệm áp suất cao dự đoán rằng hydro sẽ là một chất lỏng kim loại trong phần bên trong Sao Mộc và Sao Thổ, trong khi ở Sao Thiên Vương và Sao Hải Vương, nó vẫn ở trạng thái phân tử. Ước tính cũng phụ thuộc vào các mô hình cho sự hình thành của các hành tinh. Sự ngưng tụ của tinh vân tổng thống sẽ dẫn đến một hành tinh khí có cùng thành phần với Mặt trời, nhưng các hành tinh cũng có thể đã hình thành khi một lõi rắn thu được khí tinh vân.

Trong các mô hình hiện tại, bốn hành tinh khổng lồ có lõi đá và băng có kích thước gần bằng nhau, nhưng tỷ lệ hydro và heli giảm từ khoảng 300 khối lượng Trái Đất ở Sao Mộc xuống 75 ở Sao Thổ và chỉ một số ít ở Thiên vương tinh và Hải vương tinh. Do đó, trong khi những người khổng lồ khí chủ yếu bao gồm hydro và heli, thì những người khổng lồ băng chủ yếu bao gồm các nguyên tố nặng hơn (O, C, N, S), chủ yếu ở dạng nước, metan và amoniac. Các bề mặt đủ lạnh để hydro phân tử ở dạng lỏng, vì vậy phần lớn mỗi hành tinh có khả năng là một đại dương hydro phủ lên một trong những hợp chất nặng hơn. Bên ngoài lõi, Sao Mộc có lớp phủ hydro kim loại lỏng và bầu khí quyển hydro và heli phân tử. Hydro kim loại không kết hợp tốt với helium và trong Sao Thổ, nó có thể tạo thành một lớp riêng biệt bên dưới hydro kim loại.

Hành tinh đất đá

Các hành tinh đất đá được cho là đến từ cùng một vật chất tinh vân như các hành tinh khổng lồ, nhưng chúng đã mất hầu hết các nguyên tố nhẹ hơn và có lịch sử khác nhau. Các hành tinh gần Mặt trời hơn có thể có phần tử vật liệu chịu lửa cao hơn, nhưng nếu các giai đoạn hình thành sau này của chúng liên quan đến sự va chạm của các vật thể lớn có quỹ đạo lấy mẫu các phần khác nhau của Hệ Mặt trời, thì có thể có ít sự phụ thuộc hệ thống vào vị trí.

Thông tin trực tiếp về Sao Hỏa, Sao Kim và Sao Thủy phần lớn đến từ các nhiệm vụ tàu vũ trụ. Sử dụng quang phổ tia gamma, thành phần của lớp vỏ Sao Hỏa đã được đo bằng quỹ đạo Mars Odyssey và lớp vỏ của Sao Thủy bằng tàu vũ trụ MESSENGER . Thông tin bổ sung về Sao Hỏa xuất phát từ các thiên thạch rơi xuống Trái Đất (Shergottite, Nakhlite s và Chassignite, được gọi chung là thiên thạch SNC). Sự phong phú cũng bị hạn chế bởi khối lượng của các hành tinh, trong khi sự phân bố bên trong của các yếu tố bị hạn chế bởi những khoảnh khắc quán tính của chúng.

Các hành tinh ngưng tụ từ tinh vân mặt trời và phần lớn các chi tiết về thành phần của chúng được xác định bằng cách phân đoạn khi chúng nguội đi. Các giai đoạn ngưng tụ rơi vào năm nhóm. Đầu tiên để ngưng tụ là các vật liệu giàu các yếu tố chịu lửa như Ca và Al. Chúng được theo sau bởi niken và sắt, sau đó magiê silicat. Dưới khoảng 700 kelvin s (700 K), FeS và các kim loại và silicat giàu dễ bay hơi tạo thành nhóm thứ tư, và trong nhóm thứ năm FeO nhập silicat magiê. Các thành phần của các hành tinh và Mặt trăng là chondritic , có nghĩa là trong mỗi nhóm, tỷ lệ giữa các yếu tố giống như trong các chondrites carbonaceous.

Các ước tính của các thành phần hành tinh phụ thuộc vào mô hình được sử dụng. Trong mô hình 'ngưng tụ cân bằng', mỗi hành tinh được hình thành từ một "vùng cho ăn", trong đó các thành phần của chất rắn được xác định bởi nhiệt độ trong vùng đó. Do đó, Sao Thủy hình thành ở 1400 K, trong đó sắt vẫn ở dạng kim loại nguyên chất và có ít magiê hoặc silic ở dạng rắn; Sao Kim ở 900 K, vì vậy tất cả magiê và silicon ngưng tụ; Trái Đất ở 600 K, vì vậy nó chứa FeS và silicat; và sao Hỏa ở 450 K, vì vậy FeO được tích hợp vào silicat magiê. Vấn đề lớn nhất với lý thuyết này là các chất bay hơi sẽ không ngưng tụ, do đó các hành tinh sẽ không có bầu khí quyển và Trái Đất không có bầu khí quyển.

Trong các mô hình chondritic trộn , các chế phẩm của chondrites được sử dụng để ước tính các thành phần hành tinh. Ví dụ, một mô hình trộn hai thành phần, một thành phần có thành phần của chondrites C1 và một thành phần chỉ có các thành phần chịu lửa của chondrites C1. Trong một mô hình khác, sự phong phú của năm nhóm phân đoạn được ước tính bằng cách sử dụng một yếu tố chỉ mục cho mỗi nhóm. Đối với nhóm vật liệu chịu lửa nhất, uranium được sử dụng; sắt cho lần thứ hai; tỷ lệ kali và thallium so với urani trong hai lần tiếp theo; và tỷ lệ mol FeO / (FeO + MgO) cuối cùng. Sử dụng các mô hình nhiệt và địa chấn cùng với lưu lượng và mật độ nhiệt, Fe có thể bị hạn chế trong vòng 10 phần trăm trên Trái Đất, Sao Kim và Sao Thủy. Bạn có thể bị giới hạn trong khoảng 30% trên Trái Đất, nhưng sự phong phú của nó trên các hành tinh khác dựa trên "những phỏng đoán có giáo dục". Một khó khăn với mô hình này là có thể có những lỗi đáng kể trong dự đoán của nó về sự phong phú dễ bay hơi vì một số chất bay hơi chỉ bị ngưng tụ một phần.